

Why use PL/SQL?

ORACLE WHITEPAPER | November 2016

 WHY USE PL/SQL? 29-November-2016

Contents

Introduction . 2
Applying the principle of modular design to an application

that uses an Oracle Database for persistence . 2
An alternative interpretation of the principle of modular design

for an application that needs to persist data . 4
What is SQL, and how to make it happen? . 5
Binding in and out actual arguments to placeholders when a call statement is

invoked from outside-of-the-database code . 6
The Thick Database paradigm . 7

The multi-schema model . 7
Recommended best-practice refinement:

formalize a convention to define the exposed subprogram interface 9
Business function atomicity . 9

Mechanical functional testing and performance testing
of the database interface . 10

Stubs for concurrent development of outside-of-the-database code
and the implementation of the database interface . 11

PL/SQL’s unique specific features for making SQL happen 11
PL/SQL supports all the SQL datatypes natively . 11
Static SQL . 11
Native dynamic SQL . 12
Bulk SQL . 15
Oracle errors are magically transformed to PL/SQL exceptions . 16
The authid mode . 17
No make: the promise brought by static dependency tracking . 18
Developer productivity . 19

General metadata . 19
Compiler warnings . 19
Tracing . 19
Performance analysis . 20
Oracle SQL Developer . 20
Using conditional compilation to compare candidate alternative approaches in situ 20

Deploying PL/SQL code changes with zero downtime . 20
Using PL/SQL to empower developers to provision their own databases 21
Conclusion . 21

Abstract

Large software systems must be built from modules. A module hides its implementation behind an interface

that exposes its functionality. This is computer science’s most famous principle. For applications that use an

Oracle Database, the database is, of course, one of the modules. The implementation details are the tables

and the SQL statements that manipulate them. These are hidden behind a PL/SQL interface. This is the

Thick Database paradigm: select, insert, update, delete, merge, commit, and rollback are issued only from

database PL/SQL. Developers and end-users of applications built this way are happy with their correctness,

maintainability, security, and performance. But when developers follow the NoPlsql paradigm, their applications

have problems in each of these areas and end-users suffer. This paper provides PL/SQL devotees with

unassailable arguments to defend their beliefs against attacks from skeptics; skeptics who read it will see the

light.
1 | WHY USE PL/SQL? 29-November-2016

Introduction
The design of an application that uses an Oracle Database for persistence needs to address these main
challenges: the specification of the business functions that it must perform, and the requirements for the
information model that these imply; how the end-user chooses between business functions, provides facts that
drive them, and sees the effects they have; and how the effects of the business functions are persisted and
retrieved. It goes without saying that the application will be valueless unless only correct and complete data is
persisted and retrial exactly honors the request.

PL/SQL’s purpose is to enable the correct and efficient implementation of the business functions and the
persistence and retrieval of their effects. While SQL famously provides an excellent scheme to express
persistence and retrieval declaratively, it is equally famously unable to express higher level business logic. To
choose between possibly radically different courses of action, according to currently available facts, requires
programming in a good old if... then... else language. PL/SQL meets its purpose by allowing select, insert,
update, delete, commit, and rollback statements, using genuine SQL syntax, among the classical procedural
statements that its parent, Ada, gave it. In PL/SQL, therefore, a SQL statement can be seen as a special kind
of subprogram.

It’s common to lead with concerns about performance; but it would be meaningless to try to improve the
performance of an incorrect application. Correctness must first be established; and only then, may
performance be considered.

I’ll therefore take the opportunity, in this paper, to specialize software engineering’s central, generic principle for
maximizing the chance of application correctness to address the question “Why use PL/SQL?” It turns out that
we can both have our cake and eat it: the architectural approach that maximizes the likelihood of application
correctness is the same one that brings optimal performance – and optimal security.

And finally, an acknowledgment: There’s a lot of overlap between what I write about in this paper and what

Toon Koppelaars1 writes about in the Helsinki Declaration.2 For at least the last decade and a half, Toon has
been a practical exponent of, and a vigorous advocate for, what I formalize here as the
Thick Database paradigm. He calls it the fat database paradigm. Over the years, I’ve heard both terms used
often by various speakers at conferences for users of Oracle Database.

Applying the principle of modular design to an application
that uses an Oracle Database for persistence
Few would deny that the correct implementation of a large software system depends upon good modular
design. A module is a unit of code organization that implements a coherent subset of the system’s functionality
and that exposes this via an interface. The interface directly expresses this, and only this, functionality; and it
hides all the implementation details behind this interface. This principle is arguably the most important one
among the legion best practice principles for software engineering – and it has been commonly regarded as
such for at least the past half century.

These days, an application that uses an Oracle Database as its persistence mechanism is decomposed at the
coarsest level into the database module, the application server modules, the modules that implement the
graphical user-interface, and so on. Self-evidently, the overarching requirement that the database module must
meet is at, all times, to persist only complete and correct data, and to retrieve it correctly. The completeness
and correctness criteria are prescribed by the specification of the business functions, and so the database

1. Toon’s Twitter handle is @ToonKoppelaars: twitter.com/ToonKoppelaars

2. thehelsinkideclaration.blogspot.co.uk/2009/03/start-of-this-blog.html
2 | WHY USE PL/SQL? 29-November-2016

https://twitter.com/ToonKoppelaars
http://thehelsinkideclaration.blogspot.co.uk/2009/03/start-of-this-blog.html
http://thehelsinkideclaration.blogspot.co.uk/2009/03/start-of-this-blog.html

module cannot be responsible for meeting its requirement without the authority brought by owning the entire
implementation of the business function logic together with the persistence and retrieval of the data.

The ultimate implementation of the database module is the SQL statements that query, and make changes to,
the application’s tables. However, an operation upon a single table often implements just part of the
persistence requirement of what, in the application’s functional specification, is characterized as a particular
business function. The canonical example is the transfer funds business function within the scope of all the
accounts managed by an application for a particular bank. This function is parameterized primarily by
identifying the source account, the target account, and the cash amount; other parameters, like the date on
which the transaction is to be made, and a transaction memo, are typically also required.

This immediately suggests this interface:

It is specified as a function to reflect the possibility that the attempt may be denied; and the return datatype is
non-scalar to reflect the fact that the reason for the denial might be characterized by several values, including,
for example, the shortfall amount in the source account. These need to be presented back to the end-user.

Notably, the possibility to request that the action be done some time in the future implies all sorts of secondary
persistence structures and daemons to act on the information that they store.

We can see immediately that there are many different plausible design choices. For example, there might be a
separate table for each kind of account, reflecting the fact that different kinds of account have different account
details; or there might be a single table, with an account kind column, together with a family of per-account-kind
details tables. There will similarly be a representation of account holders, and again these might have various
kinds, like personal and corporate, with different details. There will doubtless be a table to hold requests for
transfers that are due to be enacted in the future. There are very many possibilities for implementing these
actions.

The point is obvious: a single interface design that exactly reflects the functional specification may be

implemented in many different ways. The conclusion is equally obvious:

This is sometimes known as the Thick Database paradigm. It sets the context for the discussion of when to use
SQL and when to use PL/SQL. The only kind of SQL statement that is allowed into the database is a

call statement3 that invokes exactly one of the interface’s subprograms:

Of course, this principle of modular decomposition is applied recursively: the system is broken into a small
number of major modules, each of these is further broken down, and so on. PL/SQL’s package construct
supports the coarsest granularity, and this construct explicitly supports interface exposure and implementation
hiding. Then, subprograms do this at the next finer level. And subprograms within subprograms to arbitrary

3. The call statement is semantically equivalent to an anonymous PL/SQL block that does nothing more than invoke a single
user-written procedure or function. The rule that every call to the database must be a call statement is terse and implies that every
such call may invoke only a single PL/SQL subprogram. It would take more words to say this if an anonymous PL/SQL block were
allowed as a top-level call. The call statement has the further advantage over the anonymous PL/SQL block that it is described in
the SQL Standard. Of course, in Oracle Database, call statement can invoke only PL/SQL subprogram.

function Transfer_Funds(Source in..., Target in..., Amount in..., ...)
 return Outcome_t;

The database module should be exposed by a PL/SQL interface that models each business
function according to its specification. All the procedural logic to implement each business
function, and most certainly the details of the names and structures of the tables, and the SQL
that manipulates them, should be securely hidden from outside-of-the-database entities.

call Transfer_Funds(:s, :t, :a, ...) into :r
3 | WHY USE PL/SQL? 29-November-2016

depth complete the picture. Because SQL statements can be seen as a special kind of subprogram, called
from PL/SQL, the division of labor between the PL/SQL and SQL subsystems in the database, and how they
communicate mutually, are usually the most critical determinants of overall PL/SQL performance.

The alternative to the Thick Database paradigm is to make every call to the database a SQL statement that
explicitly manipulates the application’s tables. I’ll call this the NoPlsql paradigm. Of course, it makes the
database tier unworthy of the term “module”.

An alternative interpretation of the principle of modular design
for an application that needs to persist data
These days, several frameworks exist that allow an information model, and the business functions for change
and retrieval that should operate upon its instance, to be specified in a declarative fashion. Typically, they are
implemented outside of the database and they allow the developer to choose the persistence mechanism;

usually, the Oracle Database is just one possibility among several. Figure 1 shows the general idea.4

The defining paradigm is that the actual protocol, specific to the chosen persistence mechanism, that deals
with the data is entirely mechanically generated by the framework. In the case that the Oracle Database is
chosen as the persistence mechanism, the typical outcome is that the use of SQL is inefficient. For example,

operations tend to be done row-by-row (sometimes referred to as slow-by-slow5) rather than in bulk. And
features specific to the Oracle Database are not used. The most notable neglected feature is PL/SQL. Because
the framework is distinct from the Oracle Database that it encapsulates, the performance penalty that comes
from doing every individual select, insert, update, delete, merge, commit, and rollback in its own top-level
database call becomes very noticeable. Nothing can be done about this type of problem except by human
intervention to re-write some of the mechanically generated SQL statements by hand. But any such
intervention immediately compromises the paradigm.

4. The names Tina on Tracks, Tracy on Tacks, and NoAnything are entirely fictitious. Any resemblance to actual product names is
unintended.

5. This term is attributed to Tom Kyte.

Figure 1. A sketch of the framework paradigm.
4 | WHY USE PL/SQL? 29-November-2016

Another feature of this approach is that the only top-level calls allowed to the Oracle Database must be those
that come from the framework. This requires a special kind of policing that must supplement, rather than rely
upon, the intrinsic security mechanisms provided by the Oracle Database. These problems, and others brought
by using the framework paradigm, are popular presentation topics at Oracle User Group conferences. This
paper will say no more about the framework paradigm.

Note: When I first published this paper, the Tracks framework was at version 1 and was called
Tina on Tracks. Now this has been replaced by version 2, called Tracy on Tracks – artfully implying
compatibility. However, the versions aren’t fully compatible, and so the shapes of the generated tables, and
correspondingly the select, insert, update, delete, and merge statements that query and change them, differ

slightly. This brings the need for a one-off ad hoc migration exercise6.

The time-honored alternative to the framework paradigm uses ordinary human intellect to produce the table
design that implements the application’s information requirements. If a modeling tool is used, then at least the
resulting table design is understood by developers, and the understanding informs the rest of the design of the
application. This is the context for what this paper deals with.

What is SQL, and how to make it happen?
A SQL statement describes the effect it that it should have without specifying how to achieve that effect. This is
why SQL is classified as a declarative language. Significantly, SQL has no larger building block than the single
statement and therefore no terminator character is needed – and nor is one allowed. This implies that SQL
cannot be used to write a program. Moreover, the compilation and execution model for SQL differs from that for
many familiar programming languages. A SQL statement cannot be named, compiled to produce a persistently
stored named executable, and then thereafter executed by mentioning its name. Rather, the text of a

SQL statement must be submitted to an Oracle Database7 for compilation and execution each time its effect is
needed. This is done by using an if... then... else programming language or a tool that has been implemented
using such a language that can interpret the SQL*Plus scripting language. From now on, I’ll use the term
host language for any if... then... else programming language that, by any means, is able to make SQL

happen8.

Some host languages handle SQL by providing only a subroutine interface for the explicit steps exemplified by
these:

>> open a cursor

>> compile a SQL statement in that cursor

>> when appropriate, bind actual arguments to placeholders in the SQL statement

>> execute the SQL statement

>> eventually, close the cursor

6. I was inspired to write this tongue-in-cheek note after watching the presentation by Hadi Hariri called The Silver Bullet Syndrome,
published on 13-November-2015, posted here: https://www.youtube.com/watch?v=3wyd6J3yjcs.

7. The Oracle Database is our focus of interest in this paper. The general execution model for SQL is the same for all database
systems.

8. I appreciate that the term host language is generally used more specifically. The SQL standard defines a scheme for embedding
an extended form of SQL in languages like C or FORTRAN so that a precompiler can translate this into a lower level version that
actually makes the real SQL happen. It calls such a language a host language. Oracle Corporation’s Pro*C is an example of such
a scheme. I need a less specific term, but none seems to have been established.
5 | WHY USE PL/SQL? 29-November-2016

https://www.youtube.com/watch?v=3wyd6J3yjcs

For a select statement, extra steps are needed: subroutine calls are used to establish a mapping between
select list items and variables in the host language; and subroutine calls are used to fetch the results.

Given that a host language is needed to make SQL happen, where should it be run? There are only two
choices: inside the database or outside the database.

Running the host language outside of the database implies submitting every ordinary select, insert, update,
delete, merge, commit, and rollback to the database as a top-level call. This approach requires that the
microscopic detail of the tables in every single schema and both the within-table constraints and the between-
table constraints need to be understood outside of the database. inevitably, then, it will be possible to query
and change every single table from outside of the database. Because famously some kinds of constraint
cannot be implemented declaratively, the responsibility to enforce the data rules will lie partly outside of the
database; and so will the responsibility to honor the specified integrity of the business functions. This approach
means that the database cannot be responsible for meeting its charter: to persist only complete and correct
data, and to retrieve it correctly and according to the various security rules that the overall application requires.

Needless to say, the communication with the database will be chatty and performance will suffer. But when
correctness has already been sacrificed, this is hardly the most important concern.

The only sensible choice, then, is to run the host language inside the database. There are only two such
languages that can run inside an Oracle Database: Java and PL/SQL. But Java has only subroutine support for
SQL. The DBMS_Sql package is PL/SQL’s subroutine interface for doing SQL; but it also, uniquely, has
language features for doing SQL. We shall look at these in the section “PL/SQL’s unique specific features for
making SQL happen” on page 11.

The inescapable conclusion is that every ordinary select, insert, update, delete, merge, commit, and rollback,
must be issued from PL/SQL units stored in the database.

How, then, can the PL/SQL subprograms that expose the database interface be invoked from outside of the
database? The call statement allows exactly this. Because it is just one particular kind of SQL statement, it can
therefore be executed from any outside-of-the-database SQL-aware host language. Code_1 shows the
invocation of a procedure.

We can now name, and characterize, two paradigms for the architecture of an application that uses an
Oracle Database:

>> The NoPlsql paradigm: every kind of SQL statement is allowed from outside-of-the-database entities except
for two, the call statement and the anonymous PL/SQL block, because of a religious objection to PL/SQL.
The implementation of a business function typically needs lots of round trips to and from the database. The
time for these might dominate the time for executing the SQL itself.

>> The Thick Database paradigm: the only kind of SQL statement that is allowed from outside-of-the-database
entities is the call statement. Every business function needs just a single round trip to and from the
database. Thereafter, the PL/SQL-SQL-PLSQL round trips that implement the business functions take place
within the same operating system process.

Binding in and out actual arguments to placeholders when a call statement is
invoked from outside-of-the-database code
Outside-of-the-database code whose purpose is to submit SQL statements for execution in an
Oracle Database, and to receive their results, must use the Oracle Net protocol. Because Oracle Corporation

-- Code_1
call Pkg.Bulk_Insert(:Rows)
6 | WHY USE PL/SQL? 29-November-2016

does not document this protocol, outside-of-the-database code must, ultimately, use the subroutine interface to
Oracle Net exposed by the Oracle Call Interface library, hereinafter the OCI, or a subroutine interface built on

top of this like ODBC or JDBC9 that is specific for a particular host language environment. The subroutines for
binding, in some particular outside-of-the-database host language, have formal parameters whose datatypes
are defined in that language specifically to match the Oracle Database datatypes that the SQL statement
placeholders stand for.

Through Oracle Database 11g Release 2, it was possible to bind only to placeholders standing for formal
parameters and variables with SQL datatypes but not to those standing for PL/SQL-only datatypes like record
and index-by-pls_integer table. This restriction caused noticeable discomfort because an
index-by-pls_integer table of record is the target for PL/SQL’s bulk select feature and the source for its

bulk DML feature10. A reasonable workaround was available; but it was rather cumbersome and had some
performance drawbacks. It isn’t necessary to say any more about the workaround because, starting with
Oracle Database 12c, the OCI now allows binding to placeholders that stand for all of the PL/SQL-only
datatypes except for index-by-varchar2 table; and ODBC and JDBC, for example, inherit this improvement.

In modern multi-tier architectures, where the relationship between outside-of-the-database entities and the
database is stateless, the response to any end-user query is never more than tens of records. A large result set
is delivered in successive pages; and each new page request implies a newly executed select statement that
uses an appropriate pagination restriction. An index-by-pls_integer table of record, populated by a bulk select
statement, is the perfect structure to pass a page of results from the database to an outside-of-the-database
program. Similarly, when the end-user interacts to gather, or modify, several records that then should all be
persisted, an index-by-pls_integer table of record is the perfect structure to pass these to the database from the

outside-of-the-database program so that it can be used as the source for a bulk DML statement.11

In summary, staring with Oracle Database 11g Release 2, the call statement allows the invocation, from an
outside-of-the-database program, of any arbitrarily parameterized PL/SQL subprogram.

The Thick Database paradigm
It is straightforward to install the set of artifacts that define an application’s Oracle Database backend in such a
way that the only items that outside-of-the-database code can see are the PL/SQL subprograms that
implement the specified business functions. In other words, the Thick Database paradigm can be formally
enforced.

The multi-schema model
This is the simplest enforcement regime:

>> Install all the tables in a dedicated Data schema.

9. There are two flavors of JDBC. Thick JDBC is built on top of the OCI. And thin JDBC interfaces directly to Oracle Net using Java
code. This distinction is of no consequence for what this paper deals with. Thin JDBC, by requirement, is indistinguishable from
Thick JDBC from the viewpoint of Java code that uses it.

10. I’ll refer to the forall statements for insert, update, or delete as bulk DML.

11. There seems, in these modern architectures, to be no use case for the ref cursor.
7 | WHY USE PL/SQL? 29-November-2016

>> Install all the PL/SQL units in a dedicated Code schema, using definer’s rights units12 and grant the Select,
Insert, Update, and Delete object privileges on the tables in the Data schema to the owner of the
Code schema.

>> Install private synonyms in an otherwise empty Access schema for the subset of these units in the

Code schema that defines the database interface13; and grant the Execute object privilege on only these
units to the owner of the Access schema.

>> Let only the name and password for database user that owns the Access schema be known to developers of
outside-of-the-database code.

This basic regime can be refined by using several schemas for the tables, to reflect a classification scheme for
the data, and several schemas for the PL/SQL units, to reflect a classification scheme for the functionality. A
common scheme is to separate tables for usage auditing from those for the application’s substantive data, and
to separate the PL/SQL units that manipulate these two kinds of tables accordingly. Figure 2 shows the general
idea.

The inner white circle represents the Data schema. The surrounding gray ring represents the Code schema.
Notably, every single select, insert, update, delete, merge, commit, and rollback that executes when the
application is in ordinary use is issued from one of the PL/SQL units in this schema. The outer pink ring
represents the Access schema where the red dots s1, s2, and so on represent the synonyms that denote the
subset of units in the Code schema that define the exposed interface. The only database calls that are allowed
invoke the interface subprograms.

The picture shows a few examples of different kinds of outside-of-the-database entities that use the interface
that the Access schema exposes. Notice that Oracle Application Express is shown. The fact that it actually
runs inside the database is very interesting for various practical reasons. But conceptually it is a peer to the
other outside-of-the-database entities. The specific mechanism that is used to invoke PL/SQL subprograms

12. The distinction between definer’s rights and invoker’s rights is discussed in the section “The authid mode” on page 17.

13. Some developers prefer to keep the Access schema totally empty and to implement, instead, a logon trigger that sets the
Current_Schema to the Access schema.

Figure 2. The Thick Database paradigm.
8 | WHY USE PL/SQL? 29-November-2016

varies between these entities. For example, a daemon whose purpose is to communicate with, for example, a
remote service for verifying the use of a credit card (depicted by the robot icon) might be written in C using the
OCI to invoke call statements explicitly. When Oracle REST Data Services expose the PL/SQL subprograms
that define the interface, its server looks after the translation of an incoming HTTP request to an appropriate

call statement14 without the developer who uses it having to program this. The same applies for the
composition of the response from the value returned by the nominated PL/SQL subprogram.

Compare Figure 2 with Figure 1 on 4.

>> In the framework NoPlsql paradigm, it is the boundary of the framework itself that implements the hard shell
round the persisted data and the functionality to manipulate it. And the framework defines the available
protocols for exercising the functionality. For example, if the main application persists only current
operational data and it is decided to implement a distinct business intelligence application to accumulate
operational data over time, then this data would have to be extracted by using a protocol supported by the
framework. When the protocol doesn’t support bulk SQL, the performance of the system-to-system transfer
can be punitively slow.

>> In the Thick Database paradigm, it is the bare Oracle Database itself that implements the hard shell. Many
access protocols are available out of the box, as Figure 2 indicates. But it is always possible for a developer
to implement an entirely new special scheme by programming ordinarily in, for example, C using the OCI or
in Java using JDBC. Such a scheme can be designed specifically for optimal performance when large
volumes of data are to be transferred. The hardness of the shell, exposed as it is by PL/SQL subprograms
that can, in such new programming projects, be exercised using call statements, is not compromised.

Recommended best-practice refinement:
formalize a convention to define the exposed subprogram interface
The interface is defined by a set of subprograms. In the general case, there may be several different clients of
the database—each with its own Access schema—and each might need to use just its own subset of the
interface-defining subprograms. This implies that it must be possible to grant the Execute object privilege with
the granularity of the individual subprogram. It seems tempting, therefore, to define the overall interface as a
set of schema-level procedure and function jackets that simply call their substantive counterparts. However,
this brings a disadvantage. The Execute object privilege brings with it the ability to read the source code of the
target of the grant, when this is a schema-level procedure or function, in the All_Source dictionary view. (For a
package, the grant brings the ability to read only the source code of the spec; the source code of a package
body is always hidden from all users but its owner.) Critically, as the next section explains, each interface
subprogram will implement error-logging code. Security would be compromised if users that are authorized to
use an interface subprogram could read how error-logging is done. The rule must therefore be to implement
each subprogram in the set that exposes the database interface as a singleton procedure or function (or
conceivably as a set of overloads with a single name) in its own dedicated package. The package spec can
contain comments to explain the purpose and usage of the subprogram; and the body will hide the details of
the error-logging. Some developers have told me that they like to take this formalization one step further and
locate the PL/SQL units that define the interface in a dedicated schema that holds no other objects.

Business function atomicity
When the top-level database call is a call statement, and this ends with an Oracle error, all changes made by
all insert, update, delete, and merge statements that it executed are automatically rolled back. However, when
every insert, update, delete, and merge statement is executed each in its own server call, and when just one

14. The implementation might use an anonymous PL/SQL block rather than a call statement. This is unimportant for this paper’s
purpose because the programmer doesn’t see the implementation of the invocation of the PL/SQL subprogram.
9 | WHY USE PL/SQL? 29-November-2016

causes an Oracle error, only its effect is rolled back while the changes made by the other statements are not.
Thus when the Thick Database paradigm is followed, the atomicity of each business function is guaranteed by
a transparent, uniform scheme. But when the NoPlsql paradigm is followed, all outside-of-the-database code

must be carefully policed to ensure that commit and rollback statements are properly placed.15

Each interface subprogram (when it changes data), but no others, would implement commit as its final
executable statement. And each interface subprogram would implement an others handler to deal with the
logging of unexpected exceptions and the invocation of Raise_Application_Error() to notify
outside-of-the-database code that a fatal error had occurred, and to provide the incident identifier for a support

ticket. The others handler would start with rollback16. This approach is illustrated in Code_7 on page 17.

With the formality in place that the interface is defined by a set of packages, each of which exposes just a
single subprogram, it is easy to recap these critically important rules:

>> Each interface-defining jacket subprogram does no more than to invoke the subprogram that exposes the
substantive implementation, and to implement error-handling.

>> The commit and rollback statements must be allowed only within the interface-defining package bodies17.

>> The final executable statement, before the exception section, of the implementation of every such
interface-defining subprogram, when its purpose is to change data, must be the commit statement.

>> No interface-defining subprogram may be called from database PL/SQL.

Mechanical functional testing and performance testing
of the database interface
A huge benefit of the Thick Database paradigm is that both the functional correctness and the performance of
the database module can tested independently of any outside-of-the-database code that will use it. This is the
empirical proof of design by contract. The tests are written by developers whose speciality is Oracle Database
development engineering. In other words they are SQL and PL/SQL experts. This means that all sorts of
bonuses are immediately available. For example, test results can be recorded easily in database tables
(probably in a different database than the one under test, by using a database link) for subsequent analysis and
long-term archiving. If execution plans, or other such metrics need to be gathered, this can all be done by
interleaving the SQL and PL/SQL calls for these purposes with the ones for exercising the functionality under
test. The old SQL*Plus warhorse is often enough for running such scripted tests. But, of course, the test
actions can trivially be invoked from dedicated PL/SQL units written specially to implement the test suite.

Notice that performance testing becomes very clean in this approach. All concerns about tier-to-tier latency
vanish. This means that if, later, an end-to-end test that involves noticeable amounts of
outside-of-the-database code shows poor performance, it will be immediately apparent where the blame lies. If
the end-to-end performance metrics are close to those for exercising the database functionality directly, then
the testers know one thing. And if the end-to-end metrics are much worse than the bare database metrics, then
the testers know something entirely different.

15. We shall elaborate on this in the section “Oracle errors are magically transformed to PL/SQL exceptions” on page 16.

16. The rollback is not necessary because it is done implicitly when an unhandled exception escapes the top-level call. However, it is
in no way harmful to write it, and doing so makes the behavior unambiguously clear to all readers.

17. If autonomous transactions are used for error-logging in units that implement the functionality that the interface-defining
subprograms express, then these must, of course, also implement a commit.
10 | WHY USE PL/SQL? 29-November-2016

When mechanical testing is easy, problems are disclosed early in the development cycle. But when, as is
implied by the NoPlsql paradigm, testing requires simulation of the HTTP requests emanating from the
end-user’s browser, and is therefore hard, problems of all sorts – functional and performance – are disclosed
only late, if at all, in the cycle.

Stubs for concurrent development of outside-of-the-database code
and the implementation of the database interface
The Thick Database paradigm brings another benefit. The developers of the outside-of-the-database code can
make progress on their side of the interface at the same time that the developers who are implementing the
interface carry out that project. The approach needs only an early agreement on the specification of the
interface with an adequate, interim, “mock” implementation.

PL/SQL’s unique specific features for making SQL happen
Because PL/SQL is a specialization of Ada designed explicitly to work with the Oracle Database, it naturally
has many unique features for making SQL happen. They allow code to be compact and clear, which hugely
increases the likelihood of correctness. And they deliver run-time efficiency. The examples in the following
sections all show how PL/SQL manages the select statement. Similar benefits apply for insert, update, delete,
and merge.

PL/SQL supports all the SQL datatypes natively
Every SQL datatype can be used to declare a variable or a formal parameter in PL/SQL. This is hugely
important for correctness because any scalar expression that can be used in a SQL statement can also be
used in PL/SQL with the same spelling; and it will have the same semantics. In particular, the notion of null,
with its famous rules for combination using boolean operators like or and and, is identical in PL/SQL and SQL.

PL/SQL allows so-called anchored declarations, using %type and %rowtype. This scheme lets the PL/SQL
directly express the intention that a variable or formal parameter has the same datatype as a table column.
Using it ensures code clarity, reliability, and maintainability.

Ordinary scalar SQL functions, like To_Char(), Sqrt(), Floor(), Ceil(), Least(), Greatest(), and so on are all

available in PL/SQL.18 Of course, aggregate functions like Max() and analytic functions like Lag() are available
only in SQL.

Static SQL
PL/SQL allows all the SQL statements that an application ordinarily needs – select, insert, update, delete,

merge, commit, and rollback19 – as PL/SQL statements. Such statements are called static SQL. In some
cases, the spelling of the static SQL statement is identical to that of the corresponding plain SQL statement.
Where appropriate, the static SQL syntax extends that of plain SQL, for example with the select... into
static SQL statement for getting exactly one row.

18. A few scalar SQL functions are not supported in PL/SQL. Nvl2() is an example. Enhancement request 21781286 asks for every
ordinary SQL function to be supported in PL/SQL.

19. In other words, static SQL supports the class of SQL statements that allow binding the placeholders together with those for
transaction control.
11 | WHY USE PL/SQL? 29-November-2016

The cursor for loop is a very telling example of the unique value that PL/SQL adds in comparison to the
subroutine approach that other languages must use. Consider the example shown in Code_2.

with this declaration of the buffering procedure:

Notice these features:

>> The static SQL statement is spelled the same as the corresponding plain SQL statement except that, where
the plain SQL statement would have placeholders, the static SQL statement has identifiers that cannot
resolve in SQL scope but do resolve in PL/SQL scope. The PL/SQL compiler works in cooperation with the
SQL compiler to derive this canonically spelled plain SQL statement text:

>> The derived SQL statement text is stored with the compiled version of the PL/SQL unit so that when it is
executed, the current values of p.Lo and p.Hi are bound to the placeholders :B2 and :B1. We hear constantly
of the evils of encoding would-be bind values as literals into the text of the SQL statement. This is
encouraged by the subroutine style of doing SQL that is all that most outside-of-the-database
host languages offer. It leads to a new so-called hard parse for each new execution; and the contention that
this causes can bring a system to its knees under normal concurrent multi-session use. This is an
ever-popular conference theme: “bind to placeholders, don’t concatenate values as text, to avoid the cost of
hard parse”. With static SQL, it is simply impossible to avoid following this rule.

>> Cursor management is implicit. The PL/SQL runtime system looks after it, and as soon as control leaves the
loop – ordinarily or because of an exception – the cursor is closed. Cursor leaks simply cannot happen.

>> Stated more carefully, the cursor is actually held open, but marked as semantically closed. The PL/SQL
runtime system may close it if there is space pressure, but typically does not need to. This means that when
control later returns to the loop it is necessary only to bind and execute the SQL statement. The “bind to
placeholders” mantra implies that, with hard parse avoided, the search to find the already-compiled child in
the cursor cache is free. But cost of this search, the so-called soft parse, can be significant. PL/SQL’s
soft parse avoidance scheme therefore brings a further benefit on top of the hard parse avoidance.

>> Array fetch is automatically used under the covers to reduce the cost of the PL/SQL-SQL-PLSQL round trip.

>> The loop implicitly declares the variable r as a record with these fields: (t.c1%type, c2 in t.c2%type).

The hard parse avoidance, implicit cursor management, and soft parse avoidance benefits apply for all variants
of static SQL. And the same understanding that lets us see that the “bind to placeholders” mantra is implicit lets
us see that SQL injection is simply impossible with static SQL. This is a huge benefit; and it comes effortlessly
when select, insert, update, delete, and merge are issued only from PL/SQL using static SQL.

Native dynamic SQL
PL/SQL also provides native language support for doing dynamic SQL. In the very rare situations where
static SQL doesn’t support the SQL requirement, then it’s very likely that native dynamic SQL will. In the even

-- Code_2
procedure p(Lo in t.c3%type, Hi in t.c3%type) is
begin
 for r in (
 select t.c1, t.c2
 from t
 where t.c3 between p.Lo and p.Hi order by 1)
 loop
 Buffer_Row_For_Display(r.c1, r.c2);
 end loop;
end p;

procedure Buffer_Row_For_Display(c1 in t.c1%type, c2 in t.c2%type)

SELECT T.C1, T.C2 FROM T WHERE T.C3 BETWEEN :B2 AND :B1 ORDER BY 1
12 | WHY USE PL/SQL? 29-November-2016

rarer situations where native dynamic SQL doesn’t support the SQL requirement, then it’s guaranteed that the
DBMS_Sql subroutine approach will. The canonical example that calls for dynamic SQL is when the name of a

table isn’t known until run-time20. Code_3 shows a simple example of how native dynamic SQL supports
single-row select:

Notice these features:

>> The text of the plain SQL statement is assembled programatically. In general, this brings the notorious risk of
SQL injection. However, we can see by a simple inspection of the source code that the text is assembled
only from pieces that are fixed at compile time together with the dynamically created text of the table’s

identifier. Critically, the use of the Simple_Sql_Name()21 function in the DBMS_Assert package ensures that
the identifier is properly formed and can denote only a table in the current schema.

>> The syntax of execute immediate deals with the binding and the return of the select list values in a compact
and clear fashion.

>> If not exactly one row is selected, then an exception is raised.22 No_Data_Found is raised when no row is
returned. This is deemed to reflect a regrettable, but unsurprising, error: a bad choice was made for the
value of the actual argument for the PK formal parameter. A handler is therefore provided for this, and the
outcome is signaled in a useful way. Too_Many_Rows is raised when two or more rows are returned. The
spelling of the PK formal parameter indicates that it denotes the table’s primary key. Therefore, if
Too_Many_Rows is raised, this means that a fundamental data rule has been violated. The only sensible
policy is to let this exception bubble up to subprogram invoked by the call statement that started the present
database server call. The outside-of-the-database program would then receive a generic ORA-20000 error
and an associated text like “Sorry, something went wrong. Call Support and quote Incident_ID 42”.

>> The static SQL implementation of this query scenario will raise the No_Data_Found and Too_Many_Rows
exceptions in the same circumstances.

>> Though the SQL text that is submitted using execute immediate can be different each time the source code
location is revisited, it often happens that many successive revisits use the same text. Under these
circumstances, the same soft parse avoidance scheme is enjoyed as has been described for static SQL.

20. One reasonable scenario that leads to knowing a table’s name only at run-time is when a pool of same-shape tables is provided
for storing interim results during a session, and where the number of such tables that will be needed emerges only at run-time.
Such tables are checked out of the pool, used for a period, and then checked back in.

21. This function should have been called Simple_Sql_Identifier().

22. We shall return to this point in the section “Oracle errors are magically transformed to PL/SQL exceptions” on page 16.

-- Code_3
function Facts_For_PK(Table_ID in Identifier_t, PK in t.PK%type) return Row_t is
 r Row_t;
 Safe_Table_ID constant Identifier_t :=
 Sys.DBMS_Assert.Simple_Sql_Name(Table_ID);
 Stmt constant Stmt_t := '
 select t.c1, t.c2
 from '||Safe_Table_ID||' t
 where t.PK = :b';
begin
 execute immediate Stmt into r.c1, r.c2 using PK;
 return r;
exception when No_Data_Found then
 r.c1 := null; r.c2 := null;
 return r;
end Facts_For_PK;
13 | WHY USE PL/SQL? 29-November-2016

>> The items Identifier_t and Stmt_t are subtypes. This device comes from PL/SQL’s parent, Ada. In PL/SQL, it
provides a convenient way to give a name to a datatype that is anchored, using %type or %rowtype, to a
table.

The other class of use cases that call for dynamic SQL is for SQL statements that simply are not supported by
static SQL. Obvious examples are DDL statements, alter session, and alter system. While these are
uncommon in ordinary application code, they are the very essence of installation scripts. Some developers
draw benefit from encapsulating practices that they want to enforce, like for example that create index should
always use the online mode, in PL/SQL procedures. Code_4 is a simple way to allow scripts that use
create table to complete silently even when the to-be-created table already exists.

The procedure is defined in an invoker’s rights package that also declares the subtypes. Notice these features:

>> The procedure allows the actual argument for the Owner_ID formal parameter to be omitted. Here’s an
example of its use:

>> The case expression that sets the value for Safe_Qualified_ID has the same syntax and semantics in
PL/SQL as it does in SQL. The same is true for the text values that are established by concatenating literal
values with variables.

>> The value of every one of the variables, Safe_Qualified_ID, Drop_DDL, and Cr_DDL is assigned in the
declaration that establishes each as constant. This is a powerful locution for aiding clarity; the reader can be
confident that the assigned values are immutable.

>> The ORA-00942 error is mapped to a user-defined PL/SQL exception so that it can be caught and handled

without the burden of testing error codes and using if... then... else constructs.23 This is done in an inner
block statement, taking advantage of another feature inherited from Ada.

-- Code_4
procedure Create_Table_Force(
 Owner_ID in Identifier_t := null,
 Table_ID in Identifier_t,
 Stmt_Tail in Stmt_t)
is
 Safe_Qualified_ID constant Identifier_t not null :=
 case
 when Owner_ID is null then
 Sys.DBMS_Assert.Simple_Sql_Name(Table_ID)
 else
 Sys.DBMS_Assert.Simple_Sql_Name(Owner_ID)||'.'||
 Sys.DBMS_Assert.Simple_Sql_Name(Table_ID)
 end;

 Drop_DDL constant Stmt_t :=
 'drop table '||Safe_Qualified_ID;

 Cr_DDL constant Stmt_t :=
 'create table '||Safe_Qualified_ID||' '||Stmt_Tail;
begin
 declare
 Table_Doesnt_Exist exception;
 pragma Exception_Init(Table_Doesnt_Exist, -00942);
 begin
 execute immediate Drop_DDL;
 exception when Table_Doesnt_Exist then
 null;
 end;
 execute immediate Cr_DDL;
end Create_Table_Force;

begin
 Pkg.Create_Table_Force(
 Table_ID=>'x',
 Stmt_Tail=>'(n integer primary key)');
end;
14 | WHY USE PL/SQL? 29-November-2016

Bulk SQL
Both static SQL and native dynamic SQL have bulk variants that use compact and clear syntax. Code_5 shows
the bulk static SQL equivalent of the cursor for loop shown in Code_2 on page 12 with the refinement that the
pagination syntax is added and the subprogram is recast, more realistically, as a function.

The function f() is designed to be invoked by outside-of-the-database code using a call statement. The
graphical user-interface code would capture Lo, Hi, and Page_Size, and would compute Offset by counting the
number of times that “Next Page” has so far been selected. The invocation of the call statement would use an
output actual of an appropriate datatype to match PL/SQL’s Rows_t index-by-pls_integer table of record.
Significantly, because the pagination syntax shown here was brought by Oracle Database 12c, an earlier
implementation of f() would use the well-known, but more cumbersome, “Rownum slicing” syntax. The
implementation can be modernized without changing the signature of f() and without, therefore, needing any

changes to outside-of-the-database code24. This is a text-book example of the wisdom of the modular
approach to software construction.

Notice these features:

>> The static SQL statement is spelled the same as it would be for the corresponding cursor for loop except for
the presence of bulk collect into Rows. Interestingly, the PL/SQL compiler works in cooperation with the SQL
compiler to generate the identically canonically spelled plain SQL statement text that it would for the

corresponding cursor for loop:25

>> The hard parse avoidance and soft parse avoidance scheme is identical for bulk static SQL as it is for
non-bulk static SQL.

>> The bulk collect into Rows clause can be followed by the Limit clause. This is used within a surrounding
infinite loop when the result set is too large to be comfortably accommodated in its entirety in session
memory. However, the use of the pagination syntax ensures that the result set is manageably small so that
the entire result set can be fetched in a single operation.

23. We shall return to this point in the section “Oracle errors are magically transformed to PL/SQL exceptions” on page 16.

24. I do realize that this example embodies a white lie because the ability to bind to an index-by-pls_integer table of record is new in
Oracle Database 12c. But the generic point is still well-made.

25. I added line breaks to make the SQL text more readable.

-- Code_5
function f(
 Lo in t.c3%type, Hi in t.c3%type, Offset in integer, Page_Size in integer)
 return Rows_t
is
 Rows Rows_t;
begin
 select t.c1, t.c2
 bulk collect into Rows
 from t
 where t.c3 between f.Lo and f.Hi
 order by PK
 offset Offset rows fetch next Page_Size rows only;
 return Rows;
end f;

SELECT T.C1, T.C2
FROM T
WHERE T.C3 BETWEEN :B2 AND :B1
ORDER BY PK
OFFSET :B4 ROWS FETCH NEXT :B3 ROWS ONLY
15 | WHY USE PL/SQL? 29-November-2016

Code_6 shows the bulk native dynamic SQL version of the bulk static SQL shown in Code_5.

The hard parse avoidance and soft parse avoidance schemes for bulk native dynamic SQL are identical to
those for bulk static SQL in just the same way that the schemes for non-bulk native dynamic SQL and non-bulk
static SQL are identical. Similarly, the Limit clause is optional for bulk native dynamic SQL just as it is for bulk
static SQL.

Oracle errors are magically transformed to PL/SQL exceptions
The OCI subroutine library is implemented in C, and C has no formal exception notion. When
outside-of-the-database programs use the OCI, they must test a return code explicitly to detect if an
Oracle error has occurred, and if it has, test further to detect the particular error code. This leads to tedious and
error-prone coding patterns to unwind the stack until a subroutine is reached that knows how to react to the
detected error. In contrast, PL/SQL inherits a formal exception notion from Ada. The PL/SQL runtime system
looks after detecting when a SQL statement that it executes terminates with an Oracle error and, when it does,

it automatically presents this as an exception26. Such an exception can always be caught by an others handler,
and its identity can be determined by testing the value returned by the SqlCode() function; but such an
approach would simply turn down the benefit of native exception handling. Rather, for Oracle errors that the
developer will be able to handle, the best practice is to map each one to a declared exception using the
Exception_Init() pragma. We saw this in the section “Native dynamic SQL” on page 12 with the declared
ORA-00942 exception. Some exceptions, like No_Data_Found and Too_Many_Rows are already defined in
the Standard package.

26. This section’s title, PL/SQL’s unique specific features for making SQL happen, implicitly over-sells PL/SQL’s automatic
transformation of Oracle errors into exceptions. Some other languages do the same. Java is one example.

-- Code_6
function f(
 Table_ID in Identifier_t,
 Lo in t.c3%type, Hi in t.c3%type, Offset in integer, Page_Size in integer)
 return Rows_t
is
 Rows Rows_t;
 Safe_Table_ID constant Identifier_t :=
 Sys.DBMS_Assert.Simple_Sql_Name(Table_ID);
 Stmt constant Stmt_t := '
 select t.c1, t.c2
 from '||Safe_Table_ID||' t
 where t.c3 between :b1 and :b2
 order by PK
 offset :b3 rows fetch next :b4 rows only';
begin
 execute immediate Stmt
 bulk collect into Rows
 using in f.Lo, in f.Hi, in f.Offset, in f.Page_Size;
 return Rows;
end f;
16 | WHY USE PL/SQL? 29-November-2016

This feature of how PL/SQL does SQL allows a clutter-free coding style: no code is written to handle

unexpected errors except in each of the subprograms that define the database interface.27 Code_7 shows the
boilerplate code that should be used at the end of every such subprogram.

This coding standard ensures that when an unexpected exception occurs, no information about the internals of
the database module is leaked to outside-of-the-database entities. Such leakage can help hackers design their
exploits. The atomicity of the business function implemented by such a subprogram (see “Business function
atomicity” on page 9) depends critically depends on the explicit invocation of rollback as the first executable
statement in the others handler. Similarly, the subprogram’s executable section must end with commit; and no
subprogram except those that define the database interface may issue commit. Strictly speaking, commit and
rollback are needed as shown only when the interfacing-defining subprogram makes table changes; but they
are harmless in such subprograms make no table changes.

The authid mode
The distinction between the definer’s rights and invoker’s rights authid modes is meaningful only for code that
is stored in an Oracle Database and are therefore owned by a database user. We have already decided that
PL/SQL is much better suited than Java for doing SQL and so we shall consider only PL/SQL units in this
section. The authid mode non-negotiably governs the privilege regime in which the code executes; and it
governs the regime in which unqualified names are resolved. The explanation of the difference between
definer’s rights and invoker’s rights rests on the notion of the Current_User. When a session is idle, waiting for

the next database call, the value of the Current_User is identical to that of the Session_User.28 The value of
Session_User is fixed, for the entire lifetime of the session, as the database user that created that session; but
the value of Current_User can change. When, during a database call, the point of execution moves, either on
making a call or on returning from a call, into a definer’s rights unit, the value of Current_User is set to the
owner of that unit. In contrast, when the point of execution moves into an invoker’s rights unit on making a call,
the value of Current_User remains unchanged. This means that when the point of execution is in a
invoker’s rights unit, the value of Current_User might be different from the owner of the unit. The SQL
statements issued from a PL/SQL unit execute in the privilege regime defined by the direct grants that have
been made to the Current_User. Any privileges that the Current_User or the Session_User might have via a

role are ignored except for those that have been granted directly to public.29 When the call statement that

27. Some developers prefer always to implement an others handler for every subprogram so that it can log information that is in scope
only there. Then they re-raise the unexpected exception. This allows context sensitive diagnostic information to be captured at
each level of the stack as it unwinds. This pattern still brings the advantage of clutter-free coding because the others handlers
separate diagnostic code from the mainstream implementation of the ordinary logic.

28. I spell Current_User and Session_User this way because their values are given by Sys_Context('Userenv', 'Current_User') and
Sys_Context('Userenv', 'Session_User').

-- Code_7
-- The implementation of Some_Interface_Defining_Suprogram
 ...
 commit;
exception when others then
 declare
 Incident_ID pls_integer;
 begin
 -- Ensure business function atomicity.
 rollback;
 Incident_ID := Log_Errors(...);
 Raise_Application_Error(-20000,
 'Sorry, something went wrong. '||
 'Call Support and quote Incident_ID '||Incident_ID);
 end;
end <Some_Interface_Defining_Suprogram>;
17 | WHY USE PL/SQL? 29-November-2016

implements the top-level database call invokes an invoker’s rights unit, its SQL statements execute with the
privileges of the session user and their name resolution is done in the session’s current schema.

Having removed Java from the discussion, we see that the definer’s rights notion is effectively unique to
database PL/SQL. This is critical for enforcing the regime described in the section “The
Thick Database paradigm” on page 7. Only by using a schema design like that section describes, and by using
definer’s rights PL/SQL, can it be guaranteed that outside-of-the-database code has no ability to see the

application’s tables30 and is able only to invoke the PL/SQL subprograms that define the database’s interface.

The value of invoker’s rights PL/SQL is appreciated by considering subprograms like the Create_Table_Force()
procedure shown in Code_4. Here the aim is provide a convenience wrapper around powerful facilities, like
creating a table or creating, altering, or dropping a database user, to support doing these operations according
to recommended practices in a particular development shop. The developer must, having created a session as
the database user in question, be able to do the required operation directly using the primitive DDL statements
in order to be able to use the invoker’s rights unit for its intended purpose.

In summary, an invoker’s rights unit bestows no extra privilege to the database user that is the Current_User at
the moment it is invoked. But a definer’s rights unit can do this so that it can mediate actions, in a tightly
controlled way, that the database user that is the Current_User at the moment it is invoked is unable to achieve
using ordinary SQL statements.

No make: the promise brought by static dependency tracking
The source code of a PL/SQL unit typically makes lots of static references to other database objects. These
might be to other PL/SQL units; or they might be, for example, to tables or views mentioned in static SQL
statements or anchored declarations. Other types of object come into this picture. Such a static reference
creates a dependency that can be seen in the DBA_Dependencies view, and each immediate dependency
parent typically has its own immediate dependency parents. A PL/SQL unit therefore almost always has an
appreciably large closure of immediate and transitive dependency parents. A PL/SQL unit can be valid only if
each of its dependency parents, in the entire transitive closure, is valid; additionally, of course, its source must
not have any syntax or semantic errors. An attempt to use an invalid PL/SQL unit will cause an Oracle error.

The Oracle Database implements an invalidation mechanism. Whenever an object is changed or dropped,
each of its immediate dependants stands to be invalidated. Sometimes, the fine-grained dependency tracking
scheme allows some, or all, dependants to remain valid; but this outcome uses a very rigorous proof that the
change to the dependency parent is innocuous with respect to a dependant that remains valid. Safety is never
compromised. Whenever an object is consequentially invalidated in this way, then every object in its closure of
dependants is invalidated. The total effect of changing or dropping an object is immediately seen in the
DBA_Dependencies view.

All this implies that a PL/SQL unit can be used only when it has been compiled against the current definition of
its entire closure of dependency parents. There is no visible notion of linking. When the point of execution
moves from one unit to another, units are simply loaded for execution on demand.

This scheme can be understood as an automatic, and completely reliable, equivalent of the regime that the use
of utilities like UNIX’s make delivers for other kinds of programming projects. And it comes with no developer

29. Oracle Database 12c brings an enhancement in this space that allows a role to be granted to a PL/SQL unit. This provides
additional benefit beyond what this section describes. It isn’t necessary, for the purpose of this paper, to understand the details of
this new scheme.

30. Nor can outside-of-the-database code change the implementation of the PL/SQL interface. It can’t even view it in All_Source.
18 | WHY USE PL/SQL? 29-November-2016

effort beyond just typing up the various individual object definitions as scripted DDL statements. The enormous
value that this scheme brings to PL/SQL developers seems often to be overlooked.

Developer productivity
The fact that PL/SQL runs in an Oracle Database means that all sorts of formal and ad hoc developer
productivity tools are exposed by PL/SQL subroutines, dictionary views, and performance views.

General metadata
All relevant facts about all application-specific PL/SQL units, all Oracle-supplied PL/SQL units, and all their
dependency parents are available. DBA_Objects lists basic facts like the owner of the object, its type, when it
was created and last modified, and its validity. DBA_Source lists the PL/SQL source text. DBA_Procedures
and DBA_Arguments list further specific properties of PL/SQL units, the subprograms within them, and their
formal parameters. These facts are derived by compilation. The PL/Scope feature allows the developer to
request that extra metadata be derived at compilation time. This is exposed by DBA_Identifiers and shows the
per-unit line and column location all the identifiers within the corpus of PL/SQL source code of interest, the kind
of item that the identifier denotes (subprogram, variable, exception, and so on), and the kind of the usage
(declaration, definition, reference, and so on). This supports reliable, mechanical impact analysis. The value of
DBA_Dependencies has already been mentioned. Moreover, everything else about the environment in which
the PL/SQL has been compiled is listed in other views. Obvious examples are DBA_Tables, DBA_Indexes,
DBA_Constraints, DBA_Views, DBA_Sequences, and DBA_Triggers. The list of useful dictionary views goes
on.

In addition to the complete static definition of the application’s Oracle Database backend comes a wealth of
data about its run-time behavior. Some is available on an always-on, sampling basis; and some is made
available by turning on various tracing facilities.

Compiler warnings
Many programming languages implement compiler warnings. The set of PL/SQL warnings includes ones that
are specific to its use of SQL. For example, when the datatype of a PL/SQL bind actual is different from that of
the table column denoted by the placeholder to which it is bound, a warning will be drawn because this usage
can lead to a suboptimal execution plan. (The suboptimality occurs because the necessary implicit datatype
conversion can mean that an index that would boost performance cannot be used.) The requested warnings
level, together with any warnings that are drawn, are stored persistently for each unit (and exposed by the
DBA_Plsql_Object_Settings and DBA_Errors views) until the next compilation. This enables mechanical
policing, implemented in PL/SQL of course, of development shop standards.

Tracing
The classical use of the “print statement” to trace program execution and diagnose problems still continues to
be a very popular first approach, and it often turns out to be sufficient. It has the obvious appeal that output can
be produced selectively, both with respect to source code location and by conventional testing of relevant
values, for example only every Nth loop iteration, or only when a value exceeds a threshold. PL/SQL’s
conditional compilation allows such tracing code to remain permanently in place. This kind of tracing is often
helped by printing out the call stack. The Utl_Call_Stack package gives the developer considerable flexibility to
compose the most appropriate “where am I?” description. The DBMS_Trace package allows non-invasive
tracing at controllable levels of granularity. And the interactive debugging tool, exposed by
Oracle SQL Developer, supports the conventional set of non-invasive features (set breakpoint, run to next
breakpoint, step over, step into, and so on) from a graphical user-interface.
19 | WHY USE PL/SQL? 29-November-2016

Performance analysis
The developer uses the hierarchical performance profiler (mediated by the DBMS_Hprof package) to find the
major time-consumers. This tool sees the SQL statements that the PL/SQL issues as just another kind of
subprogram and reports homogeneously on the two kinds of subprogram. Very often, of course, the
SQL statements will be the major time-consumers. When the hierarchical performance profiler shows that the
major time-consumer is a PL/SQL subprogram, and when ordinary inspection of the source code isn’t enough
to spot the problem, the statement-oriented profiler (mediated by the DBMS_Profiler package) provides
mechanical assistance for the within-subprogram analysis. Each of these profilers outputs the data from a run
to ordinary tables. The programming skills needed to orchestrate profiling runs and to analyze their results are
the same skills that the developer uses to write the code under analysis: PL/SQL and SQL.

Oracle SQL Developer
Oracle SQL Developer is a modern IDE that allows the graphical definition and interrogation of everything that
defines the application’s entire Oracle Database backend and its run-time behavior.

Using conditional compilation to compare candidate alternative approaches in situ
During development, a second candidate approach is often generated by ordinary file copy and subsequent
minor editing. Sometimes more than two candidates are created this way. It quite often happens that the
exercise of comparing the candidates leads to a realization the an improvement should be made in the code
that has not been differentiated. It’s time-consuming and error-prone to make the same changes in several
places. Conditional compilation solves this problem by allowing the sections of differentiated candidate code to
remain in place in with the typically much larger volume of non-differentiated code in one single file. This has
the huge advantage of making the differentiation immediately apparent and ensuring that the non-differentiated
code is singly defined. In general, this scheme cannot be achieved by run-time tests because the differentiated
candidates need different declarations for items that must retain their pre-determined names. Because
PL/SQL’s conditional compilation can test a package global constant, differentiation that needs to be done in
lock-step across several PL/SQL units can be singly controlled. This scheme is particularly valuable when the
choice of candidate will be determined by a performance test. The experiment can be very straightforwardly
mechanized and therefore easily repeated; and only repeatability can bring confidence in the results of a
performance comparison experiment.

In this scenario, when the winner has been identified, the interim expedient use of conditional compilation
constructs will simply be removed. In another scenario, where code must be selected according to, say, the
version of the Oracle Database, because only in the later version is new syntax supported, the conditional
compilation constructs remain part of the ultimate production code.

Deploying PL/SQL code changes with zero downtime

Edition-based redefinition (hereinafter EBR)31 allows deployed PL/SQL units to be changed, dropped, or
created, in the production database, without interrupting the application’s availability. You simply create a new
edition – which has the semantic effect that all PL/SQL units, views, and synonyms are instantaneously copied
into the new edition – and then run the same DDL statements in the new edition that you would have run to do
the patching in downtime. The implementation uses a copy-on-write mechanism so that only the objects you
change consume space. When you have ensured that the new edition represents the changes you intended,

31. EBR was brought by Oracle Database 11g Release 2; Oracle Database 12c brought significant enhancements to make it easier
to adopt. EBR has a much broader applicability than is sketched in this paper: it allows changes to be made to any of the artifacts
that jointly implement an application’s database backend without interrupting availability. For example, it allows changes to table
structures and changes to the representation of data held in tables. Learning resources are listed on the OTN page for EBR at
oracle.com/ebr.
20 | WHY USE PL/SQL? 29-November-2016

then you start to take new server calls in the new edition. EBR makes it easier to hot patch code inside the
database than to do this for code that runs outside of the database.

Using PL/SQL to empower developers to provision their own databases
The Thick Database paradigm brings a clear notion of the Oracle Database Development Engineer job role.
Such an engineer needs to be fluent in both SQL and PL/SQL and to take the stance that, when hierarchically
decomposing a PL/SQL subprogram, SQL is one way to implement a subprogram in the decomposition. The
role needs the usual software engineer skills specialized to the Oracle Database: information modeling and
table design, set theory, the SQL language, execution plans and all that this implies about the use of indexes
and statistics, the PL/SQL language, and the various tools that come with these two languages (dictionary
views, performance views, tracing, profiling, and so on). Notably, administrator skills, like backup and recovery,
Data Guard, RAC deployment, how to patch and upgrade an installed Oracle Database, and so on, are not
essential.

The responsibility of the Oracle Database Development Engineer is everything that is hidden behind the
database interface, and nothing that is outside of the database.

Therefore all that the Oracle Database Development Engineer needs in order to work is an appropriately
populated database for the task in hand, a text editor, and a tool than can interpret the SQL*Plus scripting
language.

The Mulitenant architecture, brought by Oracle Database 12c, lets each developer have one or several
dedicated pluggable databases (hereinafter PDBs). When the container database is installed on a suitable
filesystem, the sparse clone feature allows the very rapid creation of a new PDB – and with a tiny space
requirement. All the primitive operations for PDB provisioning are exposed by SQL statements and these, of
course, can be encapsulated by a PL/SQL subprogram to expose higher-order functionality, like cloning a
so-called gold PDB, when this is authorized, in a controlled fashion with respect to degrees of freedom like
filesystem location for the datafiles, and so on. It is then very straightforward to build a small
developer-shop-specific application, with suitable metadata for each developer like the set of gold PDBs that
the developer is allowed to clone, the total space that all the PDBs owned by a developer can use, and so on.

Oracle Database Development Engineers can then take provisioning into their own hands using an interface to
these tasks exposed by PL/SQL – their stock-in-trade. They can clone the gold PDB of interest, deploy various
changes within it, run tests that change the data, drop the clone, and start again. Of course, the whole process
can be mechanized, using the SQL*Plus scripting language. This means that, after making small changes to
the installation scripts of interest, the effect can be fully mechanically tested by a single command. Therefore
the change-and-test cycle that characterizes the software engineer’s job can be executed in just minutes –
 even when a test might destroy the database.

This improves productivity in the same way that this transition did for programming four decades ago:

>> from the batch submission of jobs on punched cards, hours of waiting for the compilation and test run, reams
of line printer output, and a follow-up round of tedious punch card editing so that the cycle could be repeated

>> to interactive WYSIWYG text editors and immediate compilation and testing.

The difference in degree becomes a difference in kind.

Conclusion
A serious application whose charter is to persist and retrieve critical data is valueless unless the data is
persisted correctly and unless queries retrieve exactly what is requested.
21 | WHY USE PL/SQL? 29-November-2016

PL/SQL is better suited to the task of executing SQL statements and processing their results than any other
programming language that can do this. It brings these significant benefits:

>> optimal expressiveness, maintainability, and therefore maximum chance of correctness

>> optimal security

>> optimal performance.

It’s no coincidence that PL/SQL uniquely has these properties. They were defined specifically as the
requirements that the language should meet at the time of its invention.

A database that is encased in a hard shell that exposes only the intended functionality using a small number of
entry points better guarantees the correct persistence and retrieval of the data that it manages than one that
exposes its inner blood and guts to outside-of-the-database entities.

I know of many applications whose developers adhere strictly to the Thick Database paradigm; and I know of
many whose developers religiously follow the NoPlsql paradigm. End-users of the first kind of application are
happy with the correctness, maintainability, security, and performance of their applications. End-users of the
second kind routinely complain. There are performance problems because the execution of a single business
transaction often involves many round trips from the application server module to the database module. There
are long lead times for fixing problems and for bringing new functionality because even small patches imply
large effort when there is no clear distinction between the concerns of the database “module” and the concerns
of the outside-of-the-database “modules”. Moreover, SQL injection vulnerabilities are more common when the
NoPlsql paradigm is followed.

I am convinced that an application that uses an Oracle Database as its persistence mechanism has no special
properties that recommend that its design, uniquely among an uncountable number of diverse software
systems, should disregard the otherwise universally respected wisdom of modular software construction.

Bryn Llewellyn,
Distinguished Product Manager,
Database Server Technologies Division, Oracle Headquarters
bryn.llewellyn@oracle.com
22 | WHY USE PL/SQL? 29-November-2016

mailto:bryn.llewellyn@oracle.com

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1014

Why use PL/SQL?
November 2016
Author: Bryn Llewellyn

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000

Fax: +1.650.506.7200

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Introduction
	Applying the principle of modular design to an application that uses an Oracle Database for persistence
	An alternative interpretation of the principle of modular design for an application that needs to persist data
	What is SQL, and how to make it happen?
	Binding in and out actual arguments to placeholders when a call statement is invoked from outside-of-the-database code
	The Thick Database paradigm
	The multi-schema model
	Recommended best-practice refinement: formalize a convention to define the exposed subprogram interface
	Business function atomicity

	Mechanical functional testing and performance testing of the database interface
	Stubs for concurrent development of outside-of-the-database code and the implementation of the database interface
	PL/SQL’s unique specific features for making SQL happen
	PL/SQL supports all the SQL datatypes natively
	Static SQL
	Native dynamic SQL
	Bulk SQL
	Oracle errors are magically transformed to PL/SQL exceptions
	The authid mode
	No make: the promise brought by static dependency tracking
	Developer productivity
	General metadata
	Compiler warnings
	Tracing
	Performance analysis
	Oracle SQL Developer
	Using conditional compilation to compare candidate alternative approaches in situ

	Deploying PL/SQL code changes with zero downtime
	Using PL/SQL to empower developers to provision their own databases
	Conclusion

